

Descarbonización de procesos industriales mediante bombas de calor

Junio 2024

José Joaquín Aguilera Prado Consultor, PhD jjpr@teknologisk.dk Benjamin Zühlsdorf Director de inovación, PhD bez@teknologisk.dk

Creating value since 1906

Danish Technological Institute was founded in 1906 by the visionary engineer, Gunnar Gregersen.

That makes us one of the oldest institutes of our kind.

We are approved as an RTO by the Danish Minister of Higher Education and Science.

Locations

Danish Technological Institute has five different locations in Denmark and one in Spain.

Taastrup

Aarhus

Odense

Sønder Stenderup

Skejby

A part of the European R&D Network

The institute is a member of EUROTECH*, along with nine of the biggest Research and Technology Organisations in Europe:

CEA

- RISE
- Fraunhofer
- IMEC

• TNO

Tecnalia

VTT

AIT

SINTEF

• DTI

^{*}EUROTECH is an interest group stemming from EARTO (the European Association of Research and Technology Organisations).

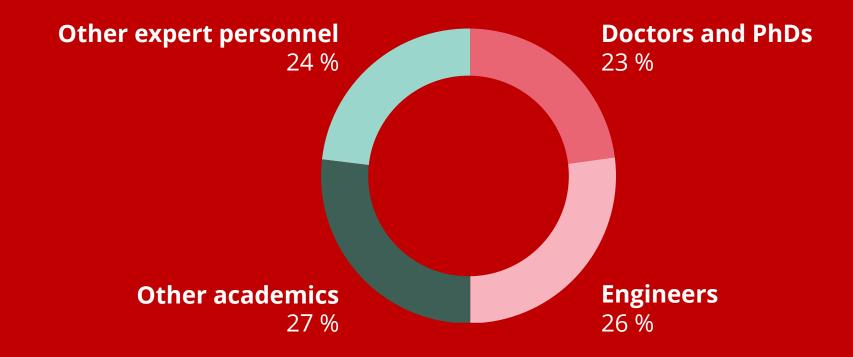
We offer three types of services

Validation

We validate and document technological solutions through tests and trials in our state-of-the art technology infrastructures.

Development

We run extensive research projects and develop pioneering technological solutions.



Integration

We integrate and implement technological solutions aligned with market, organisation, environment and culture.

WORLD-CLASS SPECIALIZED EMPLOYEES

Divisions

Food & Production

Building & Construction

Materials

Environmental Technology

Energy & Climate

Danish Technological Institute

DANISH TECHNOLOGICAL INSTITUTE President and CEO Juan Farré

FOOD & PRODUCTION		BUILDING & CONSTRUCTION	MATERIALS	ENERGY & CLIMATE	ENVIRONMENTAL TECHNOLOGY	SUBSIDIARIES
Executive VP Anne-Lise H. Lejre		Executive VP Mette Glavind	Executive VP Mikkel Agerbæk	Executive VP David Tveit	Executive VP Sune D. Nygaard	
Bioresources	Transformation Masonry Industrial 3D-print Technology Technology Process Design and Operations Pipe Centre Industrial Materials Technology Technology Technology Energy Efficiency and Laboratory for Ventilation Chemistry and		<u> </u>		Air and Sensor Technology	Danfysik A/S
Agriculture and Digitalization Food Safety and		Laboratory for Chemistry and	Dancert A/S Danish Technological Institute Spain, S.L			
Quality Food Technology	Robot Technology Sustainability and	Quality in Construction Sustainable Construction	Nano Production and Micro Analysis Plastics and Packaging Technology Tribology	Installation and Calibration Metrology and Quality Assurance Refrigeration and Heat	Microbiology Policy and Business Development	Teknologisk Innovation A
	Digitalization Training	Ideation and development			Product and Materials Chemistry	
		Wood and Biomaterials		Pump Technology Renewable Energy Systems	Water Technology	

STAFF

Tecnologías de refrigeración y bombas de calor

Validación

- Ensayos acreditados de bombas de calor
- De kW a MW

Integración

- Integración de procesos y estrategias de descarbonización
- Pruebas in situ
- Cursos para la industria

Desarrollo

- Desarrollo tecnológico de componentes y sistemas
- Pruebas experimentales
- Modelado y simulación

Bombas de calor domésticas

Calefacción distrital

Sistemas de supermercado

Operaciones de la unidad

Bombas de calor de alta temperatura

DANISH TECHNOLOGICAL INSTITUTE

Descarbonización de las industrias

Desarrollo

tecnológico

 Enfoque holístico de consultoría que apoya a las industrias

 Análisis de procesos y definición de objetivos

Estrategias de

descarbonización

Pruebas y

demostraciones

 Conceptualización y visión general de la tecnología

• Desarrollo de hojas de ruta

 Apoyo durante la implementación

 Validación de tecnologías a escala real

 Laboratorio de bombas de calor industriales

 Demostración in situ a los usuarios finales • Desarrollo de componentes

• Diseño y optimización de sistemas

Testeo de funcionalidad y rendimiento

Tecnologias

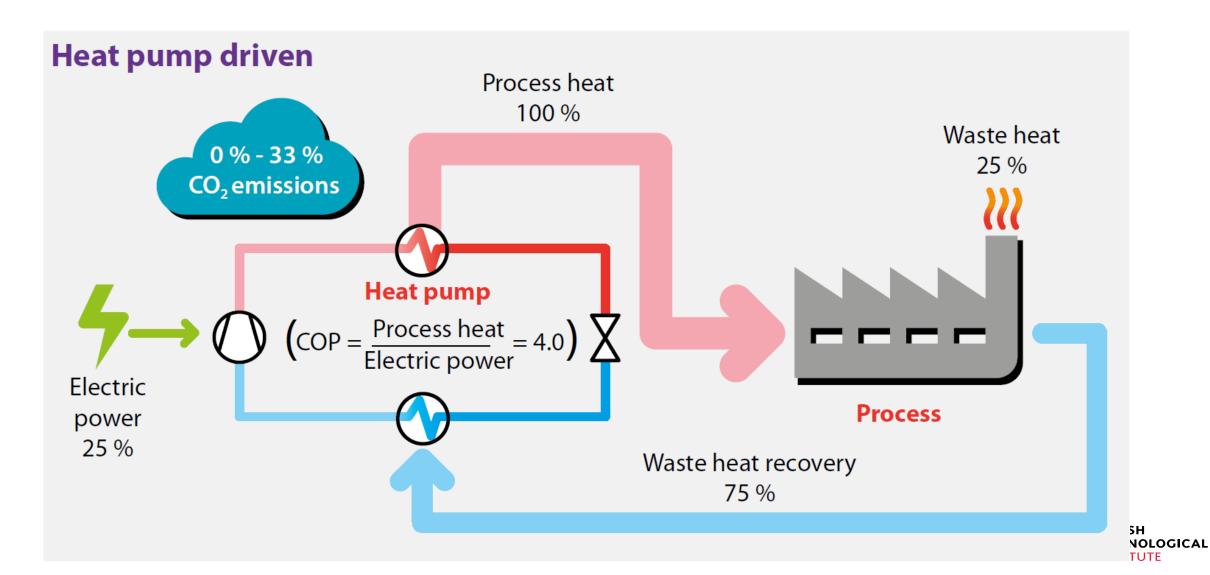
- Bombas de calor
- Almacenamiento térmico
- Redes térmicas
- Biogás y combustibles verdes
- Operaciones de la unidad
- Sistemas eléctricos
- Recuperación de agua

Alcance

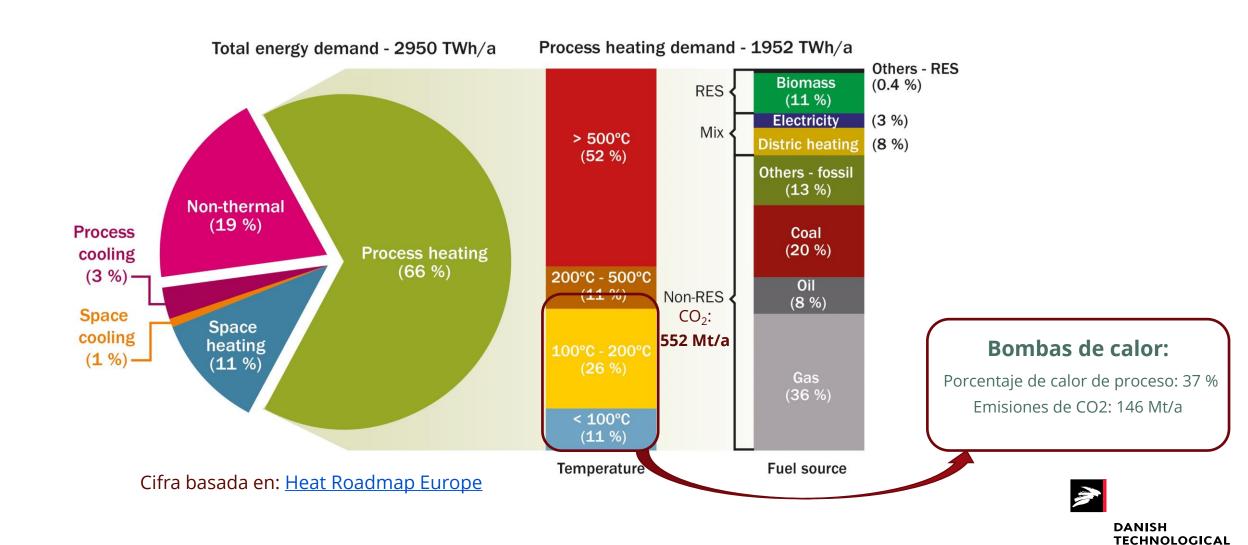
- Energía
- Emisiones de GEL
- Agua
- Economía

Socios colaboradores

- Proveedores de tecnología (fabricantes de sistemas, OEMs, ...)
- Fabricantes de equipos de proceso
- Usuarios finales de diversas industrias (Alimentos y bebidas, Celulosa y papel, productos químicos, minerales, servicios públicos, ...)



Bombas de calor industriales


Motivación y tendencias globales

Bombas de calor industriales – Principio de funcionamiento

Calentamiento de procesos en la UE 28

INSTITUTE

Revisión de las tecnologías de bombas de calor de alta temperatura- IEA HPT Annex 58

TRL (Nivel de preparación tecnológica)	4-9
Coste específico medio	200 €/kW - 1500 €/kW
Capacidad	0.02 MW - 100 MW
Max. Temperatura de suministro	100 °C - 280 °C
Disponibilidad	Dependencia geográfica, por ejemplo, entre Europa y Japón
Número de tecnologías	37 tecnologías diferentes

Lubrication use compressor is viscosity, fully o able to work

Screw compressor h

Summary of techno

Rank® is a worldwide re and manufacture of Org

capacities and applicat

valuable experience in high-temperature heat renewable heat up to

New Rank® HTHP sy

cycle with an interna

two-stage cascade c

covering larger temp

The compressor is technology with a f customer's actual

direct drive, avoid

maintenance, a

Moreover, magn

voids the possibil

Rank®

Our machines operate through an automatic, efficient managing system without human intervention. Real-time

data transmission via the internet allows predictive maintenance by server data analysis, online supervision

(PC, mobile phone, tablet, etc.), and remote configuration

Table 1: Performance for the single-stage cycle with IHX

Tsource.in Tsource.out Tsink.out COPheating

[°C] [°C] [°C] [-1]

HTHP prototype (experimentally measured in lab. prototype, not fully optimized for specific purpose)

Table 2: Case study for production of thermal oil.

Project example

erature, but users' needs can differ.

 Tsource,in
 Tsource,out
 Tsink,out
 Tsink,out
 COPheating

 [°C]
 [°C]
 [°C]
 [°C]
 [·]

 100
 70
 130
 110
 3.6

A perfect application for our HTHP systems is district

DHN are present in urban and industrial environments

where each user is connected and uses heat at a given

temperature. Heat is distributed at a particular temp-

HTHPs present in the installations of each client can

upgrade the heat at useful levels with a high COP (2.6 to 5.9). adapting the temperature glide of the heat sink. HTHPs, which local renewable energy sources can power and promote decarbonization in industries connected to district heating networks, independently of the distribution temperature, avoiding the need for fossil fuel boilers.

www.heatpumpingtechnologies.org/annex58/

FACTS ABOUT THE TECHNOLOGY

Heat supply capacity: 120 kW to 2000 kW

Temperature range: useful heat inlet 80 °C to 120 °C and outlet 100 °C to 160 °C / heat source Inlet 60 °C to 100 °C and outlet 40 °C to 80 °C

Working fluid: adaptable to the application R245fa, R1336mzz(Z), R1233zd(E)

without integration: 200-400 € per kW., but it varies between temperature levels and

TRL level: TRL 7 – prototype demonstration

Expected lifetime: 20 years (with the possibility of hiring Service to extend lifetime and ensure the highest energy performance)

Size: weight 5.5 to 8 tons / surface requried 5.2. to 13 m² / height 2.2 to 2.5 m

Contact information

Rank ORC, s.l.

info@rank-orc.com / sales@rank-orc.com +34 964 69 68 59

Il information were provided by the supplier without third-party validation. The information was provided as an indicative basis and may be different in final installations depending on application specific parameters.

DANISH

IEA Technology Collaboration Programme on Heat Pumping Technologies (HPT TCP)

TURBODEN

O EPCON

PILLER

SIEMENS

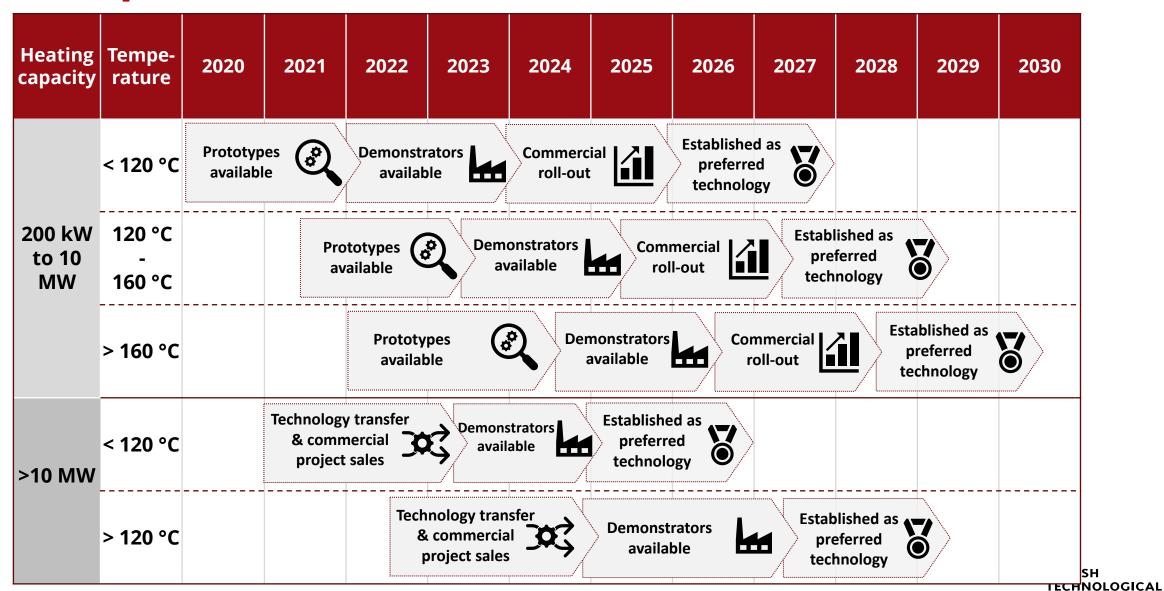
energy

enerin

HEATEN

QPINCH

SPIING



Perspectivas de desarrollo de las HTHP hacia 2030

INSTITUTE

Investigación y desarrollo

Enfoque en proyectos con bombas de calor industriales

Los factores impulsores de la descarbonización

Desarrollo Interés del tecnológico usuario final **Enfoque** político

El camino hacia la implementación

Conciencia tecnológica

- Compromiso con la sostenibilidad y la descarbonización
- Potencialidades, limitaciones y características de la tecnología
- ¿Cómo explotar los potenciales?
- Variedad de partes interesadas involucradas

Desarrollo Tecnológico

- Desarrollo de componentes y sistemas
- Pruebas y demostraciones
- Variedad de tecnologías
- Esfuerzo colaborativo

Adopción del usuario final

- Ciclo de vida de la adopción de tecnología
- Adaptación de industrias para el suministro de calor basado en BC
- Estrategias de descarbonización

Condiciones de contorno

- Costo de los combustibles y GEI
- Marcos normativos
- Subvenciones e incentivos
- Evolución del mercado

Despliegue en el mercado

- Implementación de tecnología dentro de proyectos comerciales
- Curva de aprendizaje para operadores y proveedores
- Cadena de suministro que cubre volúmenes considerables
- Modelos de negocio

Laboratorio de Refrigeración y Bombas de Calor

Instalaciones de laboratorio de clase mundial

Proyecto: SuPrHeat

- Un mayor enfoque en la electrificación
- Aumento de la competitividad de HTHP
- Gran demanda de calor entre 100 °C y 200 °C

Alcance

- Tecnologías: Compresión de vapor, Hidrocarburos, CO₂
- Integración y demostración en lechería, matadero, cervecería y otros

Objetivo

- Facilitar la electrificación del suministro de calor de procesos industriales hasta 200 °C
- Desarrollar y demostrar un portafolio tecnológico con tres prototipos (500 kW)

Datos del proyecto

- 09/2020 08/2024
- Presupuesto: 8.2 millones de Euros
- http://suprheat.dk/

The Energy Technology
Development and
Demonstration Programme

Proyecto: SuPrHeat

- 3 tecnologías complementarias
- R718 | Hidrocarburos | R744
- Tecnologías modulares y combinables

- Desarrollo de componentes
- Diseño y optimización de sistemas
- Función y rendimiento de las pruebas

- Soluciones de mejores prácticas
- Instalaciones existentes.
- Nuevos equipos de proceso
- Estrategias de transición para sitios existentes

- Demostración en tres sitios
- Aplicaciones:
 - Lechería
 - Ingredientes
 - Mataderos
 - (Cervecería)
- Pruebas a largo plazo
- Aumentar la confianza en la tecnología

Proyecto: SuPrHeat - Tecnologias

Sistema de compresión de vapor

- Compresor Spindle: alta relación de presión y TLift
- Turbocompresor de 2 etapas: caudales elevados y elevación de hasta 50 K
- Prueba a escala real: 2023
- Demostración in situ: 2024

Sistema de hidrocarburos

- Butano (R600) 120 °C
- Isopentano (R601a) 160 °C
- Compresores de pistón Bock
- Prueba a escala real: 04/2023
- Demostración in situ: 2024

CO₂ system

- $CO_2(R744) \rightarrow 180 \, ^{\circ}C$
- Compresores de pistón Bock
- Una etapa con eyectores
- Prueba a escala real: 2023
- Demostración in situ: 2024

Proyecto: Large-scale HTHP Demo

Motivación

- Demostrar HTHPs en aplicaciones industriales
- Aumentar la competitividad de los HTHP
- Aumentar la disponibilidad de la tecnología

Alcance

- Hidrocarburo + Compresión de vapor
- Compresores semiherméticos comerciales y compresores industriales abiertos
- Demostración de dos soluciones

Objetivo

- Desarrollar y demostrar HTHPs para agua caliente a 140 °C y vapor a 160 °C
- Analizar diferentes niveles de integración
- Demostrar diferentes modelos de negocio

Datos del proyecto

- 02/2022 08/2025
- Presupuesto: 6.7 millones de Euros
- 11 partners
- https://www.dti.dk/

Proyecto: Large-scale HTHP Demo

Desarrollo Tecnológico

- Desarrollo del concepto
- Diseño del sistema
- Modificación de las tecnologías de componentes existentes

Pruebas

- Pruebas de funcionamiento
- Pruebas de rendimiento
- Modificaciones e iteraciones

Integración de Procesos y Sectores

- Integración de procesos
- Nivel de integración
- Recuperación de calor
- Integración de la calefacción urbana

Demostración

- 2 Demostraciones a nivel de proceso y sector
- Entorno operativo
- Pruebas a largo plazo
- Demostración de modelos de negocio

Creando conciencia

- Diseminación
- Talleres
- Educación

Proyecto: SPIRIT

Implementation of Sustainable Heat Upgrade Technologies for Industry

Objetivos: Establecer la tecnología de bomba de calor como la tecnología de referencia (baja en carbono) para el suministro de calor industrial < 160 °C en 2025

- Demostración de la tecnología de bombas de calor a escala real (1-5 MW) en diferentes sectores/aplicaciones industriales con 3 soluciones diferentes
- Desarrollo de conceptos repetibles a escala MW que puedan integrarse en una amplia variedad de procesos
- Redacción de acuerdos y modelos de negocio para el suministro de calor mejorado, abordando posibles barreras regulatorias
- Creating awareness of the benefits of heat upgrading technology in industry for reducing energy costs and GHG emissions

Demostración

- Pruebas de rendimiento
- 3 sitios de demostración
- Comida | Celulosa y papel
 26Demostración a largo plazo

Conceptos repetibles

- Conceptos modulares combinables
- Integración de procesos
- Transferencia de tecnología

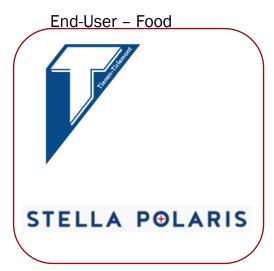
Modelos de negocio

- Modelos de negocio y estrategias de explotación
- ACV técnico y económico

Creando conciencia

- Diseminación
- Educación
- Herramientas de diseño


Proyecto: SPIRIT - Colaboradores



Coordinator: Simon Spoelstra

End-User - Paper & Pulp

Heat Pump Manufacturers

RTO & Knowledge

Simulation specialist

Replication Case

Non-Technical Barriers & Market Analysis

Dissemination & Communication

Proyecto: SPIRIT - Demostración

- Refrigerante: n-pentano (R601)
- Disipador de calor: vapor a TSat = 138 °C
- Fuente de calor: vapor de vacío a TSat = 80 °C
- Potencia calorífica: 4 MW
- Compresor de tornillo GEA
- Demostración in situ: 11/2024

Proyecto: Digital twins for large-scale heat pumps and refrigeration systems

Motivación

- Servicios mejorados a través de gemelos digitales
- Monitorización
- Detección/diagnóstico de fallos
- Funcionamiento optimizado

Alcance

- Desarrollo de modelos reutilizables, modulares y de autoaprendizaje
- Desarrollo de métodos avanzados para el análisis de sistemas

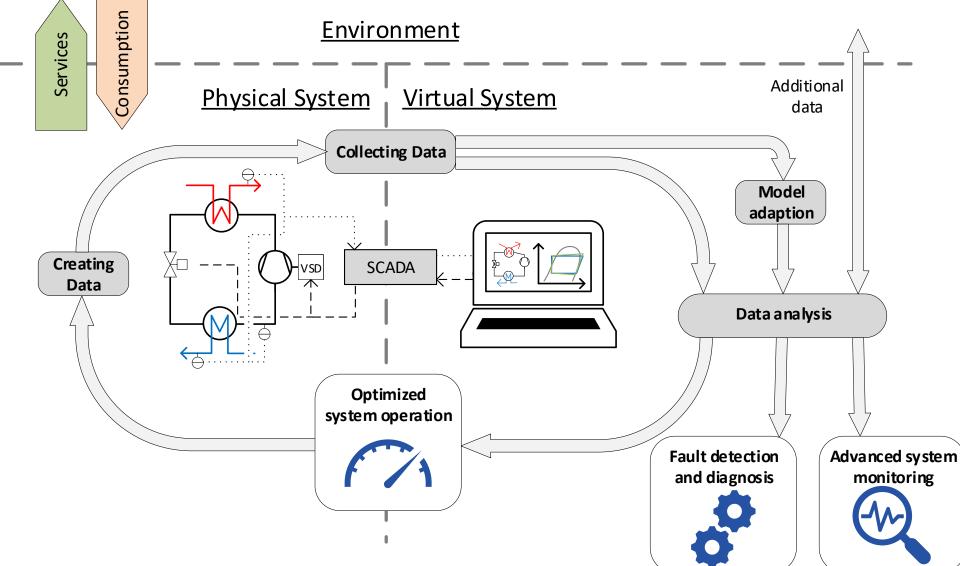
Objetivo

- Reducción del esfuerzo de creación de gemelos digitales
- Mejora de los servicios y mejor uso de los potenciales disponibles

Datos del proyecto

- 02/2020 01/2024
- Presupuesto: 2.5 millones de Euros
- 8 partners
- www.digitaltwins4hprs.dk

PARTNERS



Proyecto: Digital twins for large-scale heat pumps and refrigeration systems

Proyecto Super-Integration: sector-coupled flexible supermarkets

Motivación

- 30% de las tecnologías que ofrecen balance a la red se están eliminando gradualmente
- Integración del sistema energético
- Más de 2800 supermercados en DK

Alcance

- Mapeo de los servicios y requisitos de flexibilidad disponibles
- Uso de gemelos digitales de sistemas de refrigeración, junto con herramientas de predicción y análisis basadas en datos

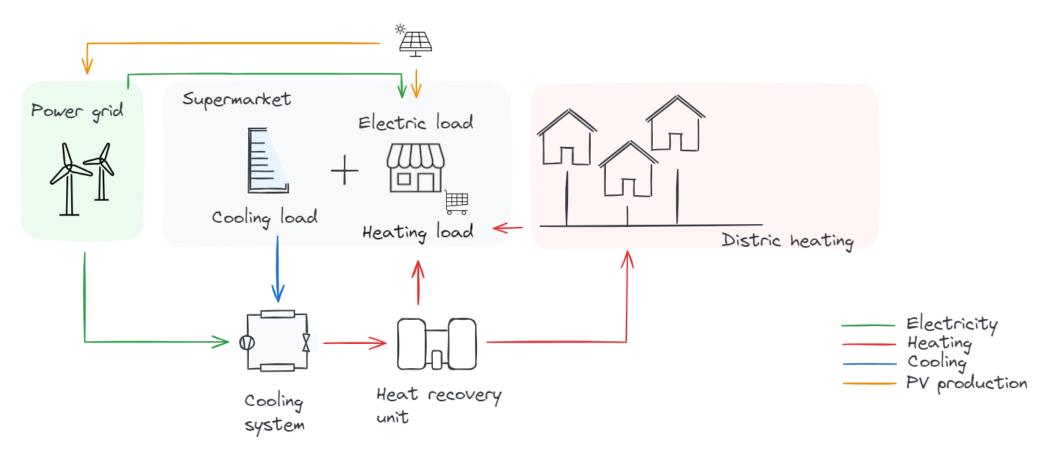
Objetivo

- Identificar y demostrar servicios de flexibilidad
- Integrar la recuperación de calor
- Caracterizar soluciones de flexibilidad
- Equilibrio de las redes mediante PV

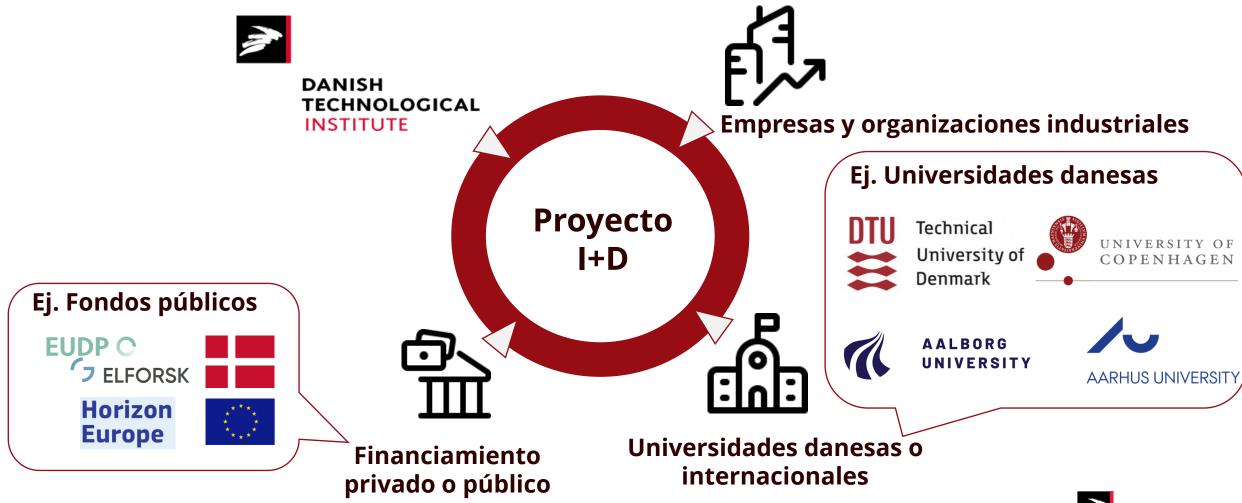
Datos del proyecto

- 02/2024 12/2026
- Presupuesto: 1 millon de Euros
- 8 partners
- www.digitaltwins4hprs.dk

PARTNERS



Proyecto Super-Integration: sector-coupled flexible supermarkets



Colaboración académica con DTI

Colaboración en proyectos I+D

Potencial colaboración académica con DTI

- Los proyectos de I+D crean un excelente ambiente para los estudiantes
- Debe ser una oportunidad beneficiosa tanto para los estudiantes como para DTI
- Puede ajustarse a los intereses de los estudiantes dentro del alcance de nuestros proyectos
- Posible combinación con trabajos de tesis (o memorias)
- Comuníquese con Benjamin Zühlsdorf (<u>bez@teknologisk.dk</u>) si está interesado en analizar las posibilidades de colaboración

Gracias por su atención!

José Joaquín Aguilera Prado

Consultor, PhD

jjpr@teknologisk.dk

+45 7220 2903